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SITE EFFECTS ON POWER SPECTRAL DENSITIES
AND SCALING FACTORS

PART I: INTRODUCTION

Background

1. Three ways of expressing the characteristics of earthquake
ground motion in the frequency domain are to compute the peak response
spectrum, Fourier spectra, and power spectral density (PSD). The re-
sponse spectrum represents the peak response of a linear l-degree-of-
freedom system to the ground motion and provides a convenient method of
obtaining a preliminary analysis of certain structural dynamics prob-
lems. The PSD is related to the Fourier amplitude spectrum of the
ground motion. In fact, the three are closely related.

2. Both response spectrum and PSD functions have been widely used
to describe earthquake ground motions in the frequency domain. Pereira,
Oliveira, and Duarte (1977), Vanmarcke and Cornell (1972), and Vanmarcke
and Gasparini (1977) have shown that the PSD function, the acceleration-
time plots, and the response spectra are all interrelated. Thus, if
a design level response spectrum is specified, then an equivalent PSD
function and a set of corresponding acceleration-time curves that are
consistent with the response spectrum can be generated. However,
neither the PSD nor the response spectrum can uniquely determine the
acceleration-time curve, because both are incomplete representations of
the ground motion, lacking phase information.

3. Seed and Idriss (1971), Tezcan (1971), and many others have
confirmed that damage to buildings during past earthquakes has been
closely associated with the vibrational characteristics of the underly-
ing soils. Duke and Hradilek (1977) and Berrill (1977) utilized Fourier
spectra to study the effects of local site conditions on ground motions
recorded in the 9 February 1971 San Fernando earthquake and its after-

shocks, However, no positive correlations were found. Hudson (1972)
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and Hudson and Udwadia (1974) made a comparison of measured strong
ground motions in the form of plots of Fourier spectra at selected

sites and found that various governing factors could be individually
studied; and in this way, it was shown that local variations are largely
governed by (a) source mechanisms, (b) propagation path, and (c) local
geology. _

4. Seed, Ugas, and Lysmer (1976) presented the results of a sta-
tistical analysis of the response spectral shapes of 104 ground-motion
accelerograms obtained from 23 earthquakes, mostly in the western United
States. The analysis shows clear differences in spectral shapes for
different soil and geological conditions. Chang and Krinitzsky (1977)
studied the duration and spectral content of strong~motion records from
the western United States according to site conditions and found that
the predominant frequencies are in the range of 0.1 to 6.67 Hz and the
spectral shape depends on the source spectrum function (magnitude),
distance, and geological conditioms.

5. An extensive study was made at the strong-motion station sites
in Ferndale and El Centro, California, by Shannon and Wilson, Inc./
Agbabian Associates (1976). Both sites are located in a highly seismic
region and have many ground-motion records. The subsurface conditions
at these sites were defined by geotechnical investigations that in-
cluded boring and sampling of the subsurface soil materials followed
by field and laboratory tests to define the index properties and the
dynamic properties of the soil needed for one-dimensional wave propaga-
tion analyses by numerical methods. The site-response analysis (SHAKE
code), site-matched records, Seed-Ugas-Lysmer site dependent spectrum,
Nuclear Commission Regulatory Guide 1.60 spectrum, and spectra from
the measured records that correspond to the '"design'" earthquake event
for the site were studied. No single method yielded the best vibratory
motion criteria for both sites. The methods described above have limita-
tions that either are related to the simplified models used for site-
response wave propagation analyses or are a direct result of the limita-

tions in the current library of strong-motion records.

6. Considering the earthquake ground motion to be random in




nature, Arnold (1975) and Arnold and Vanmarcke (1977) studied the in-
fluence of site azimuth relative to source fault orientation and local
soil conditions on earthquake ground-motion spectra for the San Fernando,
California, earthquake of 9 February 1971 using PSD functions. The re-
sult showed that local soil conditions and site azimuth, as well as
epicentral distance, can have a significant effect on both the intensity
and the frequency content of ground motions. This study demonstrated
the potential value of PSD functions as a tool for comparing and study-
ing variations in ground-motion characteristics and also showed the
great utility of PSD functions as input to random vibration analyses of

structural response.

Purpose and Scope

7. The main purpose of this study is to analyze the site depen-
dence of PSD shapes in the frequency range of 0 to 10 Hz and to consider
the application of PSD shapes in seismic design. Knowledge of the in-
fluence of site conditions on the characteristics of earthquake groﬁnd
motions and their spectral shapes is necessary for earthquake-resistant
design and analysis of structures such as earth, rockfill, or concrete
dams, large buildings, nuclear power plants, and other military or civil
facilities.

8. Factors affecting the ground motion at a particular site in-
clude the source mechanism (nature of fault movement and magnitude of
energy release), propagation path characteristics, the direction of the
site relative to the fault rupture, and local geological and soil con-
ditions. This study, however, deals only with the influence of local

geological and soil conditions on ground motion.
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PART II: POWER SPECTRAL DENSITY

9. In the application of the random vibration theory of linear
systems for evaluation of the effects of variations in ground-motion
characteristics on structural response to earthquake excitation, the
ground motion may be described in the form of a PSD function. The PSD
function G(w) 1is defined as a measure of the ground-motion power or
energy per unit time as a function of frequency « (Figure 1). Usually,
estimates of the PSD are obtained from the squared amplitudes of the
Fourier transform, or the squared Fourier amplitude spectrum. In Fig-

ure 1, A is the amplitude of sinusoidal waves.

i
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Figure 1. The PSD function G(w)

Fourier Transform

10. Generally, the given earthquake ground-motion function, such

as an acceleration versus time plot, can be represented in the time do-

main as a(t) and in the frequency domain as F(w)

ST




t
o
Flw) = '/;a(t)e-imt dt , i = v/~1 (1)
o
and
w
o
a(t) = % [ F(w)eimt dw , 1= V-1 (2)
“1

Equations 1 and 2 are called the Fourier transform pair; i.e., F(w): is
the Fourier integral or Fourier transform of a(t) , and a(t) 1is the
inverse Fourier transform of F(w) . The symbols ¢ and co denote
the instant in time and total duration, and o , wy and w0, repre-~
sent the frequency, lower frequency bound wy = 2ﬂ/to , and maximum fre-
quency (in radians per second), respectively. For practical purposes,

w, can usually be taken as zero.

1

Total Intensity, Average Power, and PSD

11. By Parseval's theorem, the relation between the energy of
the motion as expressed in the time domain and in the frequency domain
can be represented in the following equations. For a nonperiodic func-

tion, the total energy or intensity Io delivered by the source is

given by
t w
) o)
I =[ ia(t)lz dt = %f ‘F(m)lz dw (3)
0 o

The mean-square average value is expressed

w w
o]

to °
%-j lace)y|? de =ll—f IF () | dw=j (o) dw (%)
o} m tO

(¢}

(o] o




is the energv per unit time (power), or the power spec-

in which G(w)
The integrand on the right side of

tral demnsity of the function af(t)
Equation 4 can be written as
(o) = 1o 0F 2
Glo) = = 5 [Fw| (5)
0
if S0 (duration of strong motion) is substituted for to , and
w w
0
5
%f iF(m){~ do = Sof G(w) duw
o o

The quanctity iF(w)lz is called the energy spectrum or energy spectral
(Hsu 1967). The left side of Equation 4

density function of a(t)
Ai of the function

gives the statistical average power
t
&)

a(t) over

From Fquation 4, also note that

the total duration of the motion
G(w) 1in Figure 1. There-

2 .
Ao is equal to the area under the curve of
fore, the average power can be written as
W
0
2
AT = Glw) dw (6)
o
0

Strong~Motion Duration and Normalized PSD

From the relation of Equations 3, 4, S, and 6, the total

12.
intensity IO can be expressed as
1 = s3° (7a)
o o
or
Io
Sy == (7b)
A
0
8




A peak factor r may be defined as

amax
r = —“):— (83)
o]
or
amax
o T T (80)
Therefore, by substitution
I
2
s, =t 2" (9)
a
max

where r , which is a dimensionless parameter, can be determined empiri-
cally., This equation gives the strong-motion duration So , defined by
Vanmarcke and Lai (1977), which is necessarily smaller than the total
duration to . The PSD values in this report are computed in terms of
t, which yields smaller PSD values.

13. A more effective way for dealing with the frequency content
of ground motion is through the normalized spectral density function
G*(w) :

G*x(w) = G(w) (10)

>
o N

If Gf(m) is an individual normalized PSD function, the statistical

mean PSD curve will be

n
T () =% Z GHw) , 1=1,2,...n (11)

i=1

In practice, curves of E*(m) computed from suites of actual earthquake
records show large and irregular fluctuations. To isolate the system-
atic component from the random variations, frequency smoothing with a

"Hanning" window (Blackman and Tukey 1958) should be used. A detailed




procedure for the frequency smoothing will be presented in Part 1II.

Summary of Mathematical Relations

14. The above mathematical and logical presentations can be out-

lined as follows:

Time domain Frequency domain

Fourier transform pair:

w t
o o
a(t) = 'T]';"/ F(w)eiwt dw ; F(w) = / a(t)e_imt dc (12a, b)
o o
w, = maximum frequency tO = total duration

Total intensity:

t (]
) )

10 =f la(t)lz dt ; I0 = %[ IF(w)I2 dw (13a, b)
o o

Average power:

t W
o o
2 _ 1 2 . 2 _
A, =% f la(t)]® de ; A jG(w) dw (l4a, b)
o J, 5
' Power spectral density:
11 2
—_— R *
Cw) = = 5 |F(w)|“ , S, > t,

* Either total duration t, or strong-motion duration S, (Vanmarcke

and Lai 1977) may be used. In this study, t, is generally used.
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Average acceleration:

t 1/2 w 1/2
0 0
r = | la(e)|? dt A= Glw) dw (15a, b)
o t [s) 9’
o J A
Strong~motion duration:
Io Io
S = — S = —x (16)
o >\2 (o] >‘2
o o

15. This study includes investigation of (a) the site dependence
of the PSD's or the power spectral shapes in the frequency range of
0 to 10 Hz for four general types of site conditions, which are classi-
fied as rock, stiff soil, deep cohesionless soil, and soft soil; (b) the
statistical characteristics of the ground motions; (c¢) the relations be-
tween the power spectrum, average acceleration, average power (scaling
factor), duration, and total intensity (Arias); and (d) the developﬁent
of average acceleration as an alternative earthquake engineering inten-
sity scale. The average acceleration not only describes the intensity
of ground motion for input to structural design but also serves as the
scaling factor (Ai) of the normalized standard PSD spectra. In this re-
port, duration will be considered in a general sense; the strong-motion

duration will not be defined.

11




PART 111: DATA SELECTION AND DATA PROCESSING

Data Selection

16. A total of 421 horizoatal ground accelerograms I'rom 89 earth-

quakes, mostly in the western United States and Japan (with a few rec-
ords from Russia, Rumania, and India), were selected for this analysis.
Based on the site classifications of Seed and Idriss (1971) and Seed,
Ugas, and Lysmer (1976), these records have been divided into four
groups: (a) 56 records for rock sites, (b) 131 records for stiff soil
sites (depth <150 ft), (c¢) 120 records for deep cohesionless soil sites
(depth >250 ft), and (d) 114 records for soft to medium clays with asso-
ciated strata of sands or gravels. One hundred seventy-three of the

421 records were nbtained from California Institute of Technolegy (CIT)
Volume II-Corrected Accelerograms (1971-75), and 220 uncorrected records
were provided by the Port and Harbour Research Institute (PHRI), Japan.
The digitized Gazli (USSR) and Bucharest (Rumania) records were provided
by Dr. A. G. Brady, U. S. Geological Survey., All 421 corrected and un-

corrected records were adjusted to zero mean before processing the PSD.

Definition of Average Power and Average Acccleration

17. The main approach used in this study was to determine the
normalized mean and the mean plus one standard deviation PSD shape

(NPSD) for each group, and the average acceleration &0 using Equa-

tion 15b, for each raw record. Figure 1 shows G{w) , whose value

at wy is equal to Ai/ZAm , so that Xi is actually the power or
energy density in an accelerogram for a finite frequency band (0 < f

< 10 Hz in this study), and Ai is the amplitude of the ith wave compo-~
nent in centimetres per second squared. The total or average power will

become equal to the area under the continucus curve G(w)

Spectra. Smoothing

DA

18. The statistical (mean and mean plus one standard deviationm)

12
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NPSD function shapes for each group appear very irregular. Therefore,

a spectral or frequency smoothing technique has to be employed to elimi-
nate random, or nonsystematic, fluctuations of the NPSD curve. A final
smooth estimate of the NPSD may now be formed by further frequency
smoothing with a procedure called the "Hanning window" ty Blackman and

Tukey (1958) and Bendat and Piersol (1971). Llet G and GK denote a

K
raw and smooth estimate at harmonic K , where K = 0,1,2,...m ; then
G = 0.5+ 0.5C
0 0 1
LK = O.ZSGK_1 + O.SGK + O.ZSCK+1 K=1,2,...m+ 1 (17)
G_ = 0.5G + 0.5C
m m-1 m

Statistical Errors

19. The descriptive properties of a random variable cannot be
precisely determined from sample data. Only estimates of the parameters
of interest can be obtained from a finite sample of observations. The
accuracy of parameter estimates based upon sample values can be described

by a mean square error defined as

2 - »2]- E{ [+ - E(&)]z} +E {[E(&) - ¢]2} (18)

where ¢ 1is an estimator for ¢ . The first term on the right side of
Equation 18 1is the variance Var (&) , which describes the random por-
tion of the error; the second term is the square of a bias bz(&) ,
which describes the systematic portion of error. Therefore, the mean

square error is the sum of two terms:
- 2 R 5
Ef(¢ - ¢) = Var ($) + b (9) 19)

and the rms error is

JE[(& -0 - \jaz(é) + b2 () (20)

13
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where Var (9) = J2(¢) and o(¢) equals the standard error or random

error. Bendat and Piersol (1971) give the simple relationship between

d
Thus, for increasing numbers of smoothing times, the corresponding values

the random error Er and the smoothing times N, as Er = l//ﬁ; .

of Er are as follows:

B r
25 4.20
100 0.10
500 0.045

10,000 0.01

The four normalized mean and mean plus one standard deviation PSD curves
in this study have been smoothed 500 times, so the random error E
should be less than 5 percent. Figure 2 shows the effect of the smooth-

ing process on a typical PSD.

Record Length, Increment Frequency, and NPSD Function

20. The record length and spectral content (spectral amplitude
and frequency range) are two basic elements for controlling the spectral
intensity. The incremental frequency Af , used in the PSD computer
program, depends on the total record length. Since it is necessary to
use the same value for Af throughout, all accelerograms have been
processed to give them a duratjon of 163.82 sec or 8192 (213) digital
points with an equal time interval At of 0.02 sec, which gives
Af = 0.006104 Hz . OQutside the time of the actual record, the ampli-
tudes at extended times were set to zero. In this study, the PSD func-
tion G(f) has been defined to include only the frequency range of
0 to 10 Hz so that

10 Bz
AT = G(f) df (21)
0
Since Af 1is 0.006104 Hz, there are 1640 points in the raw PSD function

for each accelerogram. The NPSD function is defined as the PSD amplitude

14
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5
divided by the area A~ under the power density versus frequency curve.

This area may also be called the spectral intensity.

Spectral Frequency Range

21. Figures 2a, b, and ¢ show the PSD spectra of N-S, E-W, and
vertical components, respectively, of the El Centro earthquake of
18 May 1940. The frequency range shown is between 0 and 24 Hz. While
the energy of the PSD in the vertical component spreads between 0 and
22 Hz, the energy of the PSD for the two horizontal components is con-
centrated in the range of 0 to 10 Hz. For this record, the PSD fre-
quency range of 0 to 10 Hz is adequate for the description of the

spectra of the horizontal components.

Computer Procedures for Generating PSD

22, The computer program used to calculate one-sided PSD function

was. provided by Professor M. Shinozuka, Columbia University, and modi-

fied for the Honeywell 635 Computer by the U. S. Army Engineer Waterways

Experiment Station Automatic Data Processing (WES ADP) Center. The

procedures for generating PSD are as follows:

a. Read in accelerogram.

b. Scale accelerogram* so that accelerations are in centi-
metres per second squared.

c. Adjust accelerogram* by interpolation so that the At

between time points is 0.02 sec.

d. Extend accelerogram to (213 - 1) x 0.02 = 163.82 sec by

adding trailing zeros to the acceleration record (so far,

no accelerogram is longer than 163.82 sec).

e. Calculate the statistics (mean, standard deviation, etc.)

for the extended accelerogram and adjust it to a zero
mean.

f. Calculate the PSD of the extended, zero-mean accelerogram

(up to a frequency of 10 Hz).

* TIf necessary.

18
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Calculate the area under the PSD curve and normalize the

curve (NPSD) (i.e., divide each point of the PSD by the
area under the PSD curve).

Smooth the PSD curve or NPSD curve using the “Hanning"
process.




PART 1V: DATA PRESENTATION

23. A total of 42) horizontal accelerograms were used to estimate
the raw power spectral density (RPSD) function and its variance or RPSD
intensity. These calculated PSD functions, normalized to unit area,
will be used to represent the frequency content and characteristics of
ground motions. The final mean normalized PSD (MNPSD) and MNPSD plus
one standard deviation curves for four site groups were plotted.

24. Depending on their recording site conditions, the 421 horizon-
tal records were grouped in Tables 1 to 4:

Table 1 - 56 records for rock sites

Table 2 - 131 records for stiff soil sites

Table 3 - 120 records for deep cohesionless soil sites

Table 4 - 114 records for soft to medium clay and sand
The headings for Columns 1-9 in each table are self-explanatory. The
duration in Column 10 is arbitrarily estimated. Column 11 gives the
base PSD average power Az (note that Az = 10/164), which is the area
under the RPSD function curve for an extended record length of 163.82
sec, or 164 sec for simplicity. Column 12 gives X , the average accel-
eration, or the square root of the corresponding value in Column 11.
Column 13 is the factor for conversion of XZ (Column 11) to Ag , the
area under the PSD function for the actual record length (Column 14).
This conversion factor in Column 13 is the ratio of the extended time of
163.82 sec to the time of the total record length to or the arbi-
trarily selected duration (Column 10); i.e., Column 11 x Column 13
= Column 14, which is the raw average power Ai . Column 15 gives ko ,
the average acceleration for the corresponding Column 14. Column 16
equals Column 14 multiplied by 0.875 and is the final corrected area, or
average power Ai under the RPSD function curve. The constant 0.875 is
the amount by which the power spectrum estimates should be multiplied so
as to obtain the correct scale factor. An explanation for this correc-
tion is presented by Bendat and Piersol (1971, p. 323). Column 17 gives
the average acceleration AS or the square root of the area under the

estimated PSD function curve. Actually, the difference between Ao and

20




As is very small, so it can be considered that Ao = As . For practical
purposes, the raw average power Ai may be accepted as the scaling fac-
tor for the standard (mean or mean plus one standard deviation) NPSD
spectrum.

25. Most of the records used in this study were obtained at sites
in the western part of the United States or Japan. A few other signifi-
cant strong-motion records, such as those of the Koyna, India (1967),
Gazli, USSR (1976), and Bucharest, Rumania (1977) earthquakes, were also
included.

26. The RPSD average power values of the horizontal components for
the earthquake accelerograms of El Centro (1934 and 1940), Taft (1952),
an Olympia (1949) have been calculated for durations of 25 or 30 sec as
indiciated in Table 5. The average power of uncorrected versions of these
records (for the same durations) was calculated by Ravara (1965) and
should be different from that calculated in this study. For the purpose
of comparison and evaluation of accuracy, Ravara's values are also listed
in Row 1. The numerical values in Row 2 are directly calculated from
the CIT corrected records. Average power values adjusted from thesé
calculations for a duration of 163.82 sec to the lengths of the particu-
lar records are shown in Row 3. 1In comparing the average power in Row 2
and Row 4 of Table 5, there is a close agreement. The average power
values in Row 3 estimated from the base average power Az are higher
than those in Row 2, which were directly calculated from the actual
(shorter) duration records. Thus, the amount of increased average power
{(~ a constant factor) caused by adding zeros indicates that the final
correction is needed.

27. Table 5 also shows that the average power estimated from the
baseline uncorrected accelerograms by Ravara (1965) could have 18 to 66
percent error in comparison with CIT corrected data. The error for the
extended 163.82-sec record duration in this study is in the range of

8 to 16 percent. The average error is about 12 percent, which is in
agreement with the correction factor of 0.875 (Bendat and Piersol 1971).

After the correction factor of 0.875 is applied, the error is reduced

from 0.3 to 5.5 percent.




28. 1In conclusion, the base average power AZ of 421 records
grouped in Column 11 of Tables 1-4, which are presented in a convenient
way, can be employed to estimate the average power for any strong-motion
duration of an individual accelerogram in the lists of all four tables as
long as the selected duration is less than 163.82 seconds. Fortunately,
not one of the 421 records exceeds the duration of 163.82 seconds.

29. Table 6 is a comparison of average power calculated by the
method of Vanmarcke and Lai (1977) and Vanmarcke (1979) and the method
of this study with the same strong-motion durations corresponding to the
same records. By comparison of the average power Az and the average
acceleration Ao for the same record in Table 6, it follows that the
values calculated by Vanmarcke and Lai (1977) and in this study are in
excellent agreement, even though Vanmarcke and Lai's values of Ag were
directly derived from the time domain and the values in this study are
calculated in the frequency domain. This comparison is verifying not

only the processing techniques but also the theoretical background.

22
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PART V: DATA ANALYSES

Analysis of Site-Dependent PSD Spectral Shape

30. The NPSD functions for the horizontal accelerograms in each i

group (Table 1-4) were first determined and then were analyzed statis- i

tically to obtain the average NPSD spectra and the average plus one
standard deviation NPSD spectra (about 84 percentile). Figures 3-6
present these mean and mean plus one standard deviation NPSD spectra
for the four different site conditions. The mean NPSD spectra for the
different site conditions are compared in Figure 7, and the mean plus
one standard deviation NPSD spectra are compared in Figure 8. Both
NPSD spectra in Figures 7 and 8 are smoothed 500 times.

31. It is clear that the Jdifferences in PSD spectral shapes de-
pend on the site conditions. In particular, two categories can be
distinguished: sites having soft to medium clays and sands or deep
cohesionless soils (>250 ft) are similar and form one category, the’

soft group; stiff soil and rock sites form another category, the hard

group. A dividing line on the frequency axis appears at 2.5 Hz (0.4~sec
period). In the frequency range below 2.5 Hz, spectral amplifications
for the soft group are much higher than those for the hard group; in
the frequency range above 2.5 Hz, spectral amplifications for the hard
group are higher than those for the soft group. In the soft group,

the energy peaks for the soft to medium clays and sands and the deep

cohesionless soils both occur at about the same frequency of 1 Hz, but

the amplifications are slightly different (0.4 and 0.35, respectively).
32. The average NPSD spectrum of the deep cohesionless soil sites

has a large hump at 2.8 Hz (0.36-sec period), but the spectrum of the

soft to medium clay and sand sites does not. The large amplitude at

0 Hz is believed to be caused by a digitization error, particularly that

due to the uncorrected Japanese strong-motion data in the soil site

group. For the hard site group, in the frequency range below 2.5 Hz,

the spectral amplitude for the stiff soil is higher than that for the

o

rock; but in the frequency range above 2.5 Hz, the spectral amplitude

23
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for the rock is slightly higher than that for the stiff soil. The
largest energy peaks for the rock sites and the stiff soil sites are

at 2.75 Hz (0.36 sec) and 0.8 Hz (1.25 sec), respectively.

Statistical Characteristics of the
Earthquake Ground Motions

33. Based on the maximum ground accelerations and average ac-
celerations (PSD intensities) in Tables 1-4, and the average NPSD func-
tion estimates for the four site conditions (Figures 7 and 8), Table 7
lists the statistical characteristics of the earthquake ground motions.

34. It is apparent from Table 7 that statistical characteristics
of the ground motions are strongly site dependent. The rock sites pro-
duce an average maximum ground acceleration of about 0.20 g for the
entire suite of 56 records. The rock site group shows the highest
maximum acceleration and average acceleration of the four site groups.
The PSD function estimates are almost uniform over the peak frequencies
of 1.06, 2.75, 3.80, and 5.17 Hz.

35. The average maximum ground accelerations and PSD spectrél
intensities (or average accelerations) for the other three site groups--
stiff soils, deep cohesionless soils, and soft to medium clays and
sands--are relatively close together. However, the spreads of the
standard deviation of maximum accelerations for the stiff soil and
cohesionless soil groups are wider than for the soft to medium clays
and sands group. This large spread is believed to be caused by the
different magnitudes of earthquakes and the different epicentral dis-
tances. The group of accelerograms for soft to medium clays and sands
shows relatively low ground acceleration but the highest PSD function
estimates at the frequency of 1 Hz among the four groups. One second
(1 Hz) is probably near the predominant natural period of sites on soft
to medium clays and sands. It seems that the acceleration and the PSD
spectral intensity at 1 Hz are roughly in proportion and inverse propor-
tion, respectively, to the degree of stiffness of the site material.

In conclusion, the average acceleration or the mean spectral intensity

is site dependent.




Maximum Ground Acceieration and Average Acceleration

36. Figures 9-16 show plots of maximum ground accelerations 3 ax
against base average accelerations X (i.e., the rms value of the aver-
age power for extended durations of 163.82 sec) and against the average
acceleration AS (for selected or actual record durations) for each of
the four site condition groups. These figures indicate a common linear
trend for all four groups. This approximately linear relationship may
provide a basis for predicting strong earthquake ground motions for engi-~
neering design. The data points show greater scatter on the plots of
amax versus A than on the plots of a o x versus AS . However, mean
lines for both kinds of plot are parallel, probably because of the close
relationship between X and AS . Also, the data points for soft sites
show a wider spread than those for hard sites.

36. It 1is worthwhile to note that there is a strong correlation
(Figures 17 and 18) between a x and Xo , which were derived from the
values of IO = Soki of 140 strong-motion records in Vanmarcke and Lai
(1977, 1980). The quantity I0 is the total motion energy at constant
power )i over the strong-motion duration S0 . Twenty-two of the 140
records are for rock sites, and the rest are for soil sites. At the
same time, the two mean lines for rock sites and soil sites are almost
identical, thus indicating that the linear relationship between a

max
and xo is independent of the site conditions. The mean lines of a

versus Ao calculated from the strong-motion data of Vanmarcke and L:?x
(1977) are alsc plotted in Figures 10, 12, 14, and 16 and lie to the
right of the data for this study. Since Ao is inversely proportional
to S0 s Ao is minimum when the whole record length is considered.

The durations selected in this study were close to the whole record
lengths; thus, the calculated average accelerations are lower than the

rms accelerations of Vanmarke and Lai (1977).
Peak Factor

38. The peak factor r 1is defined as the ratio of the peak
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ground acceleration aax to the average acceleration X | or
¢ (¢}
“max
C .
r = - (22)

The physical meaning of r is the slope of the lines plotted in Fig-

ures 9-18. Equation 22 may be written as

?nax
o r (23)
If Equation 23 is substituted into Equation 16, the result mav be
expressed as
I
2 0
SO =T (24)
a
max

where r 1is a constant that mav be determined from Figures 9 through 16.
The average peak factors for rock sites, stiff soil sites, deep cohesion-
less soil sites, and soft soil sites found in this study were 5.911,
5.422, 6.996, and 5.695, respectivelv. Evidentlv, the peak factors are
nearly independent of site conditions. Therefore, an average peak

factor of 6.0 is an adequate estimate for use with long record lengths
such as those used in this report. However, r 1is dependent on the
choice of record duration. Vanmarcke and Lai (1980) found the average
peak factor for 140 horizontal earthquake records to be about 2.75
because they used strong-motion durations. Their simplified definition

of strong-motion duration is

2 T0 IO
S = (2.75)° % = 7.5 - (25)
8] qh a...
“max max

However, Equation 25 is not emploved in this study.

Comparison of Average Acceleration and Peak
Ground Acceleration Versus Distance

39. The average acceleration ‘0 in Tables 1-3 and the peak

39
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ground acceleration (PGA) or 3 x of the San Fernando earthquake of

9 February 1971 are compared qualitatively in Figures 19 and 20. The
spread of the average acceleration is as wide as that of the PGA, but
the attenuation of the average acceleration is slower than that of the
PGA. The average acceleration of an accelerogram is inversely propor-
tional to the duration, which in this study was arbitrarily selected.
In earthquake engineering design, both strong-motion duration and wave
amplitude should be considered. The average power of the PSD function
and the average acceleration, the square root of the average power,
possess Information on both duration and amplitude. The previous sec-
tions have shown good correlation between the PGA or a and the
average acceleration AO . The average acceleration can provide an
alternative earthquake engineering intensity scale, describe the inten-
sity of ground motion for input to structural design, and also serve to

compute the scaling factor Ai of the normalized standard PSD spectra.

Potential Uses of Site-Dependent Standard
NPSD Spectral Curves

40. 1In the previous sections of Part V, the four standard site-
dependent PSD spectral curves at the common record length of 163.82 sec
have been established, and they were also normalized to a unit area.
The relationships between the shape of the spectral density function
and the duration of strong ground motion for individual records will be
explained in an example. Tt is very easy to select an actual record
in Tables 1-4 and to modifyv its duration only for consistency with a
specified design earthquake. Use the N-S component of the El Centro
record, 18 May 1940, as an illustration: Record No. 3 of Table 2 shows
that the base PSD intensity Az (average power) for a duration of
163.82 sec is 663,202 cmzlsecb. Next, let the specified duration for
seismic design be 40 sec, then the new PSD intensity will be

2 163.82

Ay = 663.202 x - oo 2716.1 cm2/sec4

This value, 2716.1 cmzlsec4 , 1s also the scaling factor.

40
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4l. An alternative way is to emply the approximate linear rela-

tionships between a and )V and between and ) (for the
max max 0

rock site condition, Figures 9 and 10). I[ +,30-g maximum ground accel-
eration and 15~sec duration arc chosen as the design giround motion, what
will the scaling factor be for the normalized mean PSDH curve for rock
sites? 1In Figure 9, the base average acceleration ) for 0.30 g is
15.5 cm/secz, and the conversion factor is 163.82/15 = 10.923; then
(15.5)7 % 10.923 = 2624.25 em’/sec® (= 5122 em/sec?).  Thus,

gy 2 4 . .
2624.25 cm” /sec” is the scaling factor.
Peak Velovity Versus Average Acceleration

42, Figure 21 shows the relationship between the peak velocity
and the average acceleration. All 140 average acceleration values in
this figure were calculated from the total ground motion intensitv I0
listed in the tables of Vanmarcke and 1ai (1977) or Vanmarcke (1980),
except those of Gazli and Pacoima.  All peak velocities are given by
Chang (1978). These data points (4.5 - M < 6.8) spread over a wide
band; the upper line shown corresponds to mapnitude 6.5 and the lower
to magnitude 5.5. In the relationship between the peak acceleration
and the average acceleration in Figures 17 and 18, this particular
feature is not shown, because the velocity is related to the intensity
or energy level, and thus magnitude. The larwest carthquake representea
is the Kern County earthquake of 1952, for which the surface-wave magni-

tude M was estimated as 7.7. Professors Bolt (1978) and Nuttli et al.

(1979) found the local magnitude M‘ and the bodv-wave magnitude Mh

to be 7.2 and 6.8, rvespectivelv., Thus, 6.8 has replaced 7.7 in
Figure 21.

43, Vanmarcke and Lai's (14977, 1980) tota) intensity data were
used for calculating average acceleration hecause they have a unique
definition of strong-motion duration. These Jdata were obtained from

2

2 . . ) :
I =82 where § is the strong-motion duration and 3 is the
(3] o 0 O QO

square of average acceleration, or average power,
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Correlation of peak velocity versus average acceleration
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Correlation of Average Acceleration and Modified
Mercalli Intensity

44, It will be of much benefit to the engineering community 1f
a quantitative earthquake intensity scale, such as average acceleration
intensity, can be corrélated with the Modified Mercalli Intensity (MMI)
(Figures 22 and 23)., Table 8 shows the upper bound of site-dependent
rms intensity (square root ot the sum of two horizontal average powers)
versus the MMI., Jo obtain these bounds in the table, the rock and stiff
soil sites in Figure 22 were combined as hard sites and the deep cohe-
sionless so0il and soft soil sites in Vipare 23 as soft sites. The
Pacoima Dam, Karakyr Point, Koyna Dam, and l.ake Hughes Array No. 12
sites were located in the epicentral rggions and near the faults
(3km < R - 20km). Certainly, they possessed the maximum average accele-
ration and might be called epicentral average accelerations. 1t seems
from these limited data that the maximum average acceleration at the
epicentral region might not be over 550.0 cm/secz. However, the power
\; or the average acceleration ‘U is inversely proportional to the
duration, i.e,, the smaller the duration, the higher the average

acceleration.

Correlation ot | and MMI
Q

45, The correlations of total intensity Io with the MMI based
on the data of hard sites (Tables 1 and 1) aud soft sites (Tables 3
and 4), are plotted in Figures 24 and 25, respectivelv., The upper
bound line of Figure 24 is established by five earthquakes (San VFernando,
Gazli, Parkfield, Koyna, and Tuokachi Oki). There are four sites lo-
cated in the epicentral region (see paragraph 44), so the values are
named as epicentral intensities. The extrapolation {rom these values,
the probable epicentral seismic intensities versus the MMI, may be

listed as follows:
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Probable scismic Epicentral Intensity

Hard Sites Soft Sites
MML 10% (en’/sec®) 104 (en®/sec)
Xtl 135-100 120
Xt 82-92 70
X 52-54 40
IX 30-34 24
VIII 17-20 14
Vi 10-13 8
VI 6-38 5
v 3-5 3
v 2-3 2

46. The upper~bound line of Figure 25 indicates that the seismic
intensity at sott sites is lower than at hard sites. Also, the rate of
attenuation is lower for soft sites than for hard sites. O0Of course, the
upper-bound seismic intensities for the hard sites (Figure 24) and the
soft sites (Figure 25) are in the near field. The data under the upper-
bound line (both Tigures 24 and 25) spread widelv because of various
earthquake magnitudes and distances.

47. Damage to structures in the epicentral area is generally more
severe on soft sites than on hard sites, based on past experience and
observations. However, this study showed the seismic total intensity
(seismic energy) at soft sites to be lower than at hard sites. Thus,
the degree of damage to structures does not correlate with the seismic
total intensity in the epicentral region. Turthermore, the predominant
frequencies at soft sites are in the range of 0 to 2.5 Hz: the seismic

energy in this low-frequency range deserves further investigation as it

relates to structural damage.




PART VI: SUMMARY, CONCLUSLIONS, AND RECOMMENDATIONS
Summary

48. This study presents the results of a statistical analysis of
the spectral shapes of PSD functions of 0 to 10 Hz for 421 ground accel-
erograms from 89 earthquakes, mostly in the western United States and
Japan. The 421 horizontal accelerograms recorded on ground surface level
have been divided into groups represceating (a) rock sites (56 records),
(b) stiff soil sites (131 records), (¢) deep cohesionless soil sites
(120 records), and (d) soft to medium lays and sands (114 records).

The significant earthquake information (earthquake name, recording sta-
tion, date, distance, magnitude, MMI, and peak acceleration), base average
power Az (area under the PSD curve for the extended record of

163.82 sec), base average acceleration 4 , conversion factor (ratio of
163.82 sec to the duration of the selected record, or strong-motion
duration), raw average power Ai (spuvtral intensity, area under the

RPSD curve of the actual duration or the selected strong-motion duration),
raw average acceleration AO , corrected average power li (about

12.5 percent less than Ai), corrected average acceleration Xs , and
total intensity IO for each record are listed in Tables 1-4. Values

of Az , which were not directly estimated from original (actual) dura-
tion, were converted from AZ . Generally, Ai was about 12.5 percent
higher than Ai .

49. All 421 accelerograms were extended to 163.82 sec at an equal
time interval At of 0.02 sec by adding a string of zero accelerations.
Then, the statistical mcan, standard deviation, etc., were calculated
for the extended accelerogram and adjusted to a zero mean. Next, the
PSD and the area under the PSD curve of the extended, zero-mean accel-
erogram {(up to a frequency of !0 Hz) were estimated. Finally, the PSD
curves were normalized to a unit area to contain NPSD curves. The
statistical mean and mean plus one standard deviation of the NPSD curves
for the four site conditions were established.

50. From the comparison of the {our site-dependent NPSD spectra,

51
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it is clear that therc are differences in PSD spectrual shapes depending
on the site conditions. Two major groups are formed in the mean NPSD
spectra: soft to medium clays and sands and deep cohesionless soil
sites are similar and form one soft group; stiff soil and rock sites
form one hard group. The frequency of 2.5 Hz (0.4-sec period) forms a
dividing line on the frequency axis; in the frequency range lower than
2.5 Hz, spectral amplifications for the soft sites are much higher than
the hard sites; and in the frequency range higher than 2.5 Hz, spectral
amplifications for the hard sites are higher. However, in the case of
mean plus one standard deviation NPSD spectra, the peak amplitudes in
the low frequency range (<2.5 Hz) decrease in the order of soft soil,
deep cohesionless soil, stiff soil, and rock sites in accordance with
the degree of hardness. This order seems in correlation with the damage.

51. In the soft group, the peak amplitude at about 1 Hz for the
soft to medium clays and sands is about 14.3 percent higher than the
deep cohesionless svils. Both of them are monotonically attenuated from
the sharp peak at 1 to 10 Hz (except one hump at 2.75 Hz for the deep
cohesionless soils). 1In the hard group, the largest peak amplitudes for
the rock sites and stiff soil sites are at 2.75 Hz (0.36 sec) and 0.8 Hz
(1.25 sec), respectively. Generally speaking, the energy content is
spread widely over the frequency range of 0 to 10 Hz. It is possible
that there is a connection between the largest peak amplitude at 2.75 Hz
for the hard group and the hump at 2.75 Hz for the deep cohesionless
soils or the soft group. In other words, it could be said that 2.75 Hz
is a common frequency of bedrock under the deep cohesionless soils.

52. A qualitative comparison was made of the spectral shapes of
PSD in this study with the Acceleration Response Spectra (ARS) of Seed
and 1driss (1971), Seed, Ugas, and Lysmer (1976), and Kiremidjian and

Shah (1978). There is general agreement in the spectral shapes of both

T as N

e

o

methods except those for rock sites that the amplitude of the ARS of
Seed, Ugas, and Lysmer (1976) was lower than for the PSD in the high
frequency range. This discrepancy in amplitudes of spectra between the
PSD and the ARS was due principally to the smaller number of records for

the latter. The number of rock site records used was 28 for the ARS and

b,
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50 tor the PsD. Thus, the average spectral amplitude value for the former
is less reliable than the latter. Another dittorence is that the spec-
tral shapes of the PSD function show more peaks than do the ARS.

53. The base average power \2 (arca) under the PSD curve, which
is uniformly distributed on 163.82 sce of the extended record, has been
established for cach of the 421 records.  The raw average power A;
or any average power of strong-motion duration (see Table 6), which

is inversely proportional to the duration, can be easily calculated as

)
AT times the ratio of 163.82 sce to the duration of the selected record.
54.  The approximate linear rvelat fonships of the maximum ground
accelerations a versus the basce average accelerations » and the

max

average accelerations \0 provide a set of scaling curves for the four
site groups. Since the \i is the PSD spectral intensity, or the
scaling factor, a PSD spectrum could be generated for any design earth-
quake based on this set of scaling curves and the four standard mean
and mean plus one standard deviation NPSD spectra.

55. I the Vinal analvses, close relationships do exist among the
three parameters, durvation, average acceleration, and peak ground acdelera-
tion. Duration is inversely proportional to the square of the averuge
acceleration (average power). The latter has an approximate linear
relat ion with the peak ground accecleration. 1t is apparent that duration
has a large effect on the averape acceleration or PSD spectral intensity

2 . . . - . . _ .
\0 s, l.e., an enginecering intensity scale, Lt is also the scaling
factor for the normalized standard PSD spectrum.  However, the average
acceleration is a rvelative value that varies with duration; it is a
scaling factor of the NPSD curve. 1t might be usetul to take the Arias
intensity IO as a standard ecarthquake intensity scale.  The Avias
value includes the total duration and the average acceleration.

Cone lusions

56. The statistical analysis of 421 accelerograms shows olear

difterences in spectral shapes tor ditferent soil and geological condi-

r

tions., Within the high-tfrequency range of 2.5 te 10 Hz, the spectrum
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for the rock sites contains the highest energy or intensity; the spectrum
of the stiff soil sites is slightly lower than for the rock sites; and
the spectra of the soft clay and sand sites and the deep co'esionless
soil sites are lower still and almost the same. However, in the low-
frequency range of 0 to 2.5 Hz, the reverse exists: the soft sites indi-
cate the highest energy, the deep cohesionless soil sites are next, the
stiff soil sites are third, and finally, the rock sites. Generally, the
spectra of rock sites and stiff soil sites of similar characteristics

can be classified together as hard sites; the other two site types can

be classified together as soft sites.

57. The site dependence of NPSD spectra have been established by
statistical analysis as expected. The most significant finding of the
study is the approximate linear correlation of the PGA (amax) and aver-
age acceleration (Ao). Since Ai is the area under the PSD curve,
therefore Ai can be used as a scaling factor for NPSD spectra. If
a x is given, AO can be found from the correlation curve; of amax
and Ao .  The standard NPSD spectrum can be amplified by AO to become
a design PSD spectrum.

" 58. The comparison of the attenuation curves of the PGA and the
average acceleration versus distance of the San Fernando earthquake of
9 February 1971 showed that the attenuation rate of the average accel-

eraticn is less than the PGA and approximately linear on a log scale.

Recommendations

59. Further developments in the following three areas are needed:

a. Generation of accelerograms based on the design PSD
spectrum.

b. Relationships between the PSD spectrum and the response
spectrum.

lo

A new earthquake engineering intensity scale based on
average acceleration or average power of strong-motion
duration.
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Table 5

Comparison of Average Powers Estimated From Uncorrected, Corrected,

and Extended 163.82-sec Duration Records

Row

(1)

2)

(€)]

(4)

El Centro 1940 El Centro 1934 Taft 1952 Olympia 1949
N-S E-W N-S E-W N-S E~W N-§ E-W
Records and Duration 30 sec 30 sec 25 sec 25 sec 30 sec 30 sec 30 sec 30 sec
2 <4
Average Power, cm sec
Ravara* uncorrected 3820 2690 1900 2305 1360 1775 2930 2140
Error (%) relative to (2) 19.6 17.6 57.3 65.9 39.0 65.9 38.5 59.3
CIT corrected (standard 3193 2288 1208 1389 978 1070 2116 1375
value)
Extended 163.82 sec 3621 2637 1309 1502 1124 1219 2305 1525
Error (%) relative to (2) 13.4 15.3 8.4 8.1 14.9 13.9 8.9 10.9
Final correction 3168 2307 1145 1314 983 1067 2017 1334
(3) x 0.875
Accuracy of this study 0.8 0.8 5.2 5.4 0.51 0.3 4.7 3.0

(%) relative to (2)

*

From Ravara (1965).

Example:

Average power for N-S com-
ponent at duration 30 sec

Final corrected average
power due to adding zeros

Conversion Factor =

Extended record length (sec)
Actual or selected length (sec)

. 163.82

"

30.0

5.46 for El Centro, 1940

. Base® average power for 163.82 sec

duration (Column 10) x conversion
factor

663.2 (from Table 2) x 5.46

3621 cmzsec_k (in 3rd column of Row 3)

3621 x 0.875

2

nec-a (in 3rd columm of Row 4)

3168 cm

N
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Table 8

Correlation of rms Intensity Versus MMI

Upper bound of the site-dependent rms intensity, cm/sec2 (square root
of the sum of 2-horizontal variances)

Site Conditions

MMI Hard Sites Soft Sites
X11 400-550 250-400
X1 285-395 170-280

X 205-275 120-200
1X 145-190 84-140
VIII 105-140 59-100
Vil 75-99 41-70

VI 54-70 29-50

v 37-50 20-35
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In accordance with letter from DAEN-RDC, DAEN-ASI dated
22 July 1977, Subject: Facsimile Catalog Cards for
Laboratory Technical Publications, a facsimile catalog
card in Library of Congress MARC format is reproduced
below.

Chang, Frank K.

Site effects on power spectral densities and scaling fac-
tors : final report / by Frank K. Chang (Geotechnical Labora-
tory, U.S. Army Engineer Waterways Experiment Station}. --
Vicksburg, Miss. : The Station ; Springfield, Va. : available
from NTIS, [1981].

57, [15) p. : ill. ; 27 em. -- (Miscellaneous paper / U.S.
Army Engineer Waterways Experiment Station ; GL-81-2)

Cover title.

"July 1981."

"Prepared for Office, Chief of Engineers, U.S. Army, under
Project 4A161102AT22, Work Unit 00296."

Bibliography: p. 55-57.

1. Earthquakes. 2. Power spectra. 3. Spectrum analysis.
I. United States. Army. Corps of Engineers. Office of the
Chief of Engineers. 1I. U.S. Army Engineer Waterways Experi-
ment Station. Geotechnical Laboratory. [IlI. Title IV. Series:
Miscellaneous paper (U.S. Army Engineer Waterways Experiment
Station) ; GL-81-2,
TA7.W34m _no.GL-§1-2
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INFORMATION




IN REPLY AEFER TO:

DEPARTMENT OF THE ARMY
WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS
£. 0. BOX 83}
VICKSBURG, MISSISSIPPI 39180

Errata Sheet

No., 1

SITE EFFECTS ON POWER SPECTRAL DENSITIES
AND
SCALING FACTORS

Miscellaneous Paper GL-81-2
July 1981

Page 29, Figure 9: Change the horizontal scale of 0.1, 1, and 10 to
1, 10, and 100.

Page 31, Figure 11: Change the horizontal scale of 1, 10, and 100 to
0.1, 1, and 10.

Page 55, References: Line 16, change Keon County to Kern County,

WESGH 30 November 1981




